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Using computational techniques, it is shown that pairing is a robust property of hole-doped antifer-
romagnetic insulators. In one dimension and for two-leg ladder systems, a BCS-like variational wave
function with long-bond spin singlets and a Jastrow factor provides an accurate representation of the
ground state of the t-J model, even though strong quantum fluctuations destroy the off-diagonal super-
conducting long-range order in this case. However, in two dimensions it is argued— and numerically
confirmed using several techniques, especially quantum Monte Carlo— that quantum fluctuations are not
strong enough to suppress superconductivity.
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The nature of high temperature superconductors re-
mains an important unsolved problem in condensed matter
physics. Strong electronic correlations are widely believed
to be crucial for the understanding of these materials.
Among the several proposed theories are those where
antiferromagnetism induces pairing in the dx22y2 channel
[1]. These approaches include the following two classes:
(i) theories based on resonant valence bond (RVB) wave
functions, with electrons paired in long spin singlets in all
possible arrangements [2,3], and (ii) theories based on two-
hole dx22y2 bound states at infinitesimal doping, formed
to minimize the damage of individual holes to the antifer-
romagnetic (AF) order parameter, which condense at finite
pair density into a superconductor [4]. However, recent
density matrix renormalization group (DMRG) calculations
have seriously questioned these approaches since non-
superconducting (non-SC) striped ground states were re-
ported for realistic couplings and densities in the t-J model
[5]. Clearly, to make progress in the understanding of cop-
per oxides, the 2D t-J model ground state must be fully
understood, to distinguish it among the many proposals.

In this paper, using N-site clusters we investigate the
properties of the t-J model,

H � J
X
�i,j�

µ
Si ? Sj 2

1
4

ninj

∂
2 t

X
�i,j�s

c̃
y
i,s c̃j,s 1 H.c. ,

(1)

where c̃i,s � ci,s (1 2 ni,s̄), �…� stands for nearest-
neighbor sites, and ni and Si are the electron density and
spin at site i, respectively. Our study focuses on the low
hole-doping region of chains, two-leg ladders, and square
clusters, using different numerical techniques: quantum
Monte Carlo (QMC) [pure variational and fixed-node (FN)
approximations], DMRG, and Lanczos. Within our QMC
approach, it is possible to further improve the variational
and FN accuracy by applying a few (p # 2) Lanczos steps
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to the variational (VMC, p � 0) wave function jCV �,
jCp� � �1 1

Pp
k�1 akHk �jCV � [6]. Accurate estimates

of energy and correlation functions can also be extracted,
by extrapolating a sequence (p � 0, 1, 2) of Lanczos
calculations to the exact large-p limit, where the variance
s2 � �CpjH2jCp� 2 �CpjHjCp �2 vanishes exactly [6].

Our BCS variational wave function is defined as
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where PN is the projector onto the subspace of N par-
ticles, PG is the Gutzwiller projector, which forbids
doubly occupied sites, and J � exp�

P
i,j yi,jhihj� is a

Jastrow factor, defined in terms of the hole density at
site i, with hi � �1 2 ni"� �1 2 ni#�, and yi,j being the
variational parameters. The Fourier transform fk of the
pairing amplitude, fi,j, satisfies [3] fk � Dk��ek 2 m 1p

�ek 2 m�2 1 D
2
k �, where ek is the free electron disper-

sion, m is the chemical potential, and Dk is the BCS SC
gap function. For square lattices and periodic boundary
conditions (PBC), in the low-doping region, the most rele-
vant contribution to Dk has dx22y2 symmetry, namely, Dk �
D�coskx 2 cosky� [3,7]. For ladders, Dk � Dx coskx 1

Dy cosky was used, whereas in the 1D case Dk �
D1 cosk 1 D3 cos3k. In the following, VMC denotes
results obtained with jCV �, VMC 1 pLS (with p � 1, 2)
those obtained with jCp�, and FN and FN 1 pLS are
results obtained using the FN approximation with jCV �
and jCp� as guiding wave functions, respectively. Finally,
0 variance indicates results obtained with the variance
extrapolation method.

The central point we wish to make in this Letter is that,
by using Eq. (2) as a variational wave function, the physics
is not crucially dependent on the level of the subsequent
approximations, i.e., Eq. (2) is already a qualitatively ac-
curate representation of the true ground state. By using
© 2002 The American Physical Society 117002-1
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Eq. (2) we show that a d-wave superconductor exists in the
2D t-J, a result that recently has been very controversial.

The wave function [Eq. (2)] describes preformed elec-
tron pairs, expected to become SC within the RVB scenario
[2,3]. An important component of Eq. (2) is the Gutzwiller
projector, which at half-filling freezes the charge dynam-
ics, establishing quasi-long-range AF order [8]. This shows
that the projected BCS wave function describes magnetic
regimes as well. In addition, the SC order parameter is not
simply related to the pair amplitude D, as in weak-coupling
BCS. In fact, at low hole doping, it is proportional to the
number of holes, and not to the number of electrons. This
result is natural in hole-pairing theories [4], where super-
conductivity at half-filling is not possible, suggesting that
such theories may be similar to the RVB approach if the
latter incorporates long-range singlets, and no double occu-
pancy is enforced. Moreover, it was observed that the vari-
ational parameter D decreases with increasing hole doping
[9], suggesting a relation of this quantity with the pseu-
dogap of underdoped cuprates [10]. In hole-pair based
theories, a similar result is obtained with the hole-binding
energy, finite even at half-filling, playing the role of D [4].

To show that the wave function [Eq. (2)] accurately
describes not just a SC state but several magnetic systems
as well, consider the half-filled model on chains and
ladders. In the first case, the ground state is quasi-
antiferromagnetically ordered, with zero staggered mag-
netization and power-law spin correlations, while in the
second case, there is a finite spin gap in the spectrum,
and exponentially decreasing spin correlations [11]. The
spin structure factor Sz�q� � 1�N

P
i,j eiq�Ri2Rj ��Sz

i Sz
j �

shows a cusp at q � p in 1D, and a broad maximum
at q � �p, p� for two-leg ladders. These features are
remarkably well reproduced by our variational wave
function (Figs. 1a and 1b), which generates robust AF
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FIG. 1. Sz�q� and energies for (a) 1D and (b) two-leg ladders
at zero hole doping. The numerically exact result (open circles)
was obtained with the FN method. Pairing correlations for the
t-J model in (c) 1D (absolute value) and on (d) a tilted 2D
cluster for parallel (upper points), i.e., m � n (see text), and
orthogonal (lower points), i.e., m fi n, singlets.
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correlations at short distances. It seems that the Gutzwiller
projection of the BCS wave function allows for a quanti-
tative description of AF correlations in low-dimensional
systems [12].

Since undoped systems with short-range AF correlations
appear properly described by the wave function [Eq. (2)],
consider now the hole-doped AF systems where supercon-
ductivity should emerge according to some theories [1–4].
For this purpose the pairing correlation function D

m,n
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boring sites �i, i 1 m�. Off-diagonal long-range order
(ODLRO) is implied if Pd � 2 limr!`

p
jD
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finite in the thermodynamic limit. In 1D, ODLRO is
suppressed by quantum fluctuations, but D

m,n
i �r� is finite

at short distances and the accuracy of the wave function
[Eq. (2)] can be assessed, with the FN providing exact
results in 1D. As shown in Fig. 1c, the 1D pairing cor-
relations are indeed nonzero, although rapidly decaying
with distance. Our variational wave function reproduces
accurately the pairing correlations, but only when a long-
range Jastrow factor is included, otherwise the tendency to
pairing is overemphasized. The accuracy of the variational
wave function is also excellent for small 2D clusters,
where the exact solution is known (Fig. 1d).

Now we consider doped two-leg ladders. In Fig. 2, the
results on a 30 3 2 ladder with open boundary conditions
(OBC) and J � t are presented. It is known [13] that for
two-leg ladders the pairing correlations are the dominant
ones, i.e., they decay the slowest, but there is no true long-
range order since the system is quasi-1D. We reproduced
the results of Ref. [13], and our results show that also in
this case the ground state is well described by a projected
BCS wave function with a density Jastrow term, although
charge oscillations induced by hole-pair formation are
strong in DMRG (here considered as exact), but consider-
ably weaker with VMC. However, it is remarkable that the
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FIG. 2. (a) Average rung hole density and (b) pairing correla-
tions for a 30 3 2 ladder (with 12 holes) with J � t and OBC.
In (b) the distance r runs from the center of the ladder.
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FN approach gives the correct rung density profile, show-
ing that, even in a nontrivial system such as a two-leg lad-
der with hole pairs, the correlation functions can be well
controlled by QMC methods. In general, it is observed that,
whenever the VMC method is not quantitatively accurate,
the proper correlation functions are obtained by applying
the FN approximation [14]. Therefore, this QMC approach
combining VMC and FN methods represents a novel pow-
erful tool to assess the reliability of a variational state
[14], and to obtain accurate properties of t-J models [15].

Let us now address the main subject of this paper, i.e.,
the possibility of SC in the 2D t-J model. For this case
no exact solution (analytical or numerical) is available and,
therefore, it is crucial to perform a careful computational
analysis, comparing the results of different techniques.
While DMRG allows for an almost exact ground-state
characterization for 1D systems and two-leg ladders, un-
fortunately in 2D its accuracy appears to depend on the
boundary conditions [14]. In order to compare the per-
formances of QMC and DMRG (with m states kept), not
only the standard PBC have been considered, for which
reliable DMRG calculations on large 2D clusters presently
are not possible, but also the cylindrical boundary condi-
tions (CBC), open (periodic) in the x � y� direction, and
OBC in both directions. To reduce the number of varia-
tional parameters with CBC and OBC, the Jastrow factor
was restricted to depend only on the distance between sites,
i.e., yi,j � yi2j . Site dependent chemical potentials mi

were also used as additional variational parameters to con-
sider possible nonuniform charge distributions. To test the
stability of our variational wave function directly in 2D,
a 6 3 6 lattice with 6 holes was considered. In Fig. 3, a
comparison among different numerical techniques for sev-
eral boundary conditions is shown. The large-m extrapo-
lated energies of DMRG are consistent with those of QMC
for CBC and OBC, but not for PBC where QMC produces
substantially better energies. As in 1D, for the 6 3 6 clus-
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FIG. 3. Pairing correlations (a) and total energy (b) for various
techniques on 6 3 6 lattices. m is the number of states in the
DMRG approach. In (a) the distance r runs along the center of
the cylinder in the periodic direction.
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ter, FN does not provide qualitative changes in the pairing
correlations with respect to the VMC outcome, and the
FN 1 2LS and VMC 1 2LS correlations are close. In ad-
dition, the m � 1200 DMRG results lead to similar corre-
lations. The agreement among the many methods suggests
that the QMC method also correctly reproduces ground-
state properties in 2D systems, where the Jastrow term does
not suppress the ODLRO present in the VMC, providing
sizable long-range pairing.

The most natural boundaries without spurious symme-
try breaking are PBC, since the finite-cluster eigenstates
have all the lattice symmetries. Therefore, here the subse-
quent effort building toward the main result of this paper
focuses on PBC clusters. For these boundary conditions,
our improved variational calculation is accurate and no
sign of static stripes has been found at the couplings in-
vestigated, although dynamical effects are still possible
(see below). For 8 holes on the 8 3 8 lattice and J�t �
0.4, our best variational energy per site (FN 1 2LS) is
E � 20.66672�6�t, close to the zero variance extrapola-
tion E � 20.671�1�t, and much better than the pure vari-
ational calculation, E � 20.64266�8�t.

The main result of our paper is shown in Fig. 4, where
the SC order parameter Pd is shown for clusters of 64 sites
at several densities, and 242 sites close to optimal doping.
These results, stable among the many methods used here
and with weak size effects, are indicative of a robust SC
ground state away from half-filling in the 2D t-J model.
In view of the success of the present QMC techniques to
reproduce known results for chains, ladders, and OBC 2D
clusters, it is reasonable to consider the data in Fig. 4 as
accurate, implying a finite Pd around optimal doping re-
duced by at most 30% with respect to VMC (see inset).
In addition, the results are in good qualitative agreement
with experimental tendencies, including an optimal doping
at d � 0.18. The spin structure factor (not shown) has a
broad peak at (p,p), concomitant with exponentially de-
caying AF correlations in real space. A slight tendency
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toward spin incommensurability (SI) appears in the FN 1

2LS results at optimal density. At other densities d, such
as 0.25, a similar mild tendency toward SI was also ob-
served. Then, it is conceivable that the SC state may con-
tain very weak dynamical stripe tendencies. Alternatively,
band effects or AF correlations across holes [16] could be
responsible for the SI structure. In this doping region, the
charge structure factor N�q� has a small bump at small q’s
[14], which, however, is not related to static stipes. Our
conclusion is that, if stripes are present, they have a very
dynamical character.

In addition, we have investigated the possible coexis-
tence between antiferromagnetism and superconductivity
at low doping, as seen in recent experiments for under-
doped YBCO [17]. The pure variational approach shows a
small SC order parameter, and a vanishing small AF order
(Fig. 5). Indeed, at half-filling, the projected dx22y2 BCS
state underestimates the magnetic order since it has zero
magnetization with a logarithmically divergent Sz �p, p�
[8], and hole doping further reduces the AF correlations.
Remarkably, the FN approach enhances both the SC and
AF tendencies. In particular, the spin correlations show
robust long-range order, implying that antiferromagnetism
survives a small density range [18,19], as in experiments
[17]. The FN energies (not shown) for 0, 8, 24, and 40
holes in 242 sites are clearly stable against phase separa-
tion, but are quite close to it [20].

Moreover, hole-hole correlations display sharp peaks at
hole distance

p
2 (see Fig. 5), indicating the tendency to

have short-range hole pairs in the low hole-density ground
state [4]. These pairs were identified in previous stud-
ies [21,22], illustrating the good agreement among differ-
ent techniques. Generally, at J�t � 0.4 a clear signal at
distance

p
2 always emerges upon Jastrow and/or FN im-

provement from a two-hole RVB wave function, where
117002-4
electrons rather than holes naively appear to be paired.
This result illustrates the flexibility of the QMC approach,
and unveils unexpected similarities between the Jastrow
corrected long-singlet RVB [2,3] and the hole-pair ap-
proaches [4], both yielding closely related results.

In conclusion, robust indications of superconductivity
have been found in the 2D t-J model. The results were
obtained by substantially improving the RVB wave func-
tion with Jastrow factors [3,4,7], with recently developed
QMC methods [6]. The RVB wave function was shown to
reproduce essentially exact results for chains and ladders
already at the variational level, strongly supporting the va-
lidity of our findings in 2D.
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